
PHYTOPOLIS � Architecture Specification 
Syndic8  —  Team 10 

Ireanne Cao, Kevin Chang, Alanna Cooney, Shirley Li, Amy Mai, 
Tawakalt Okunola, Pedro Pontes García, Jordan Rudolph 

 

Dependency diagram 



Models 

Branch 

Description: This class represents a structural branch that the player has built. It stores 
information about its location. 

Justification: This model provides an easy way to represent branches, which are a core part of 
our game. 

Responsibilities Collaborators 

Get level scaling parameters Tilemap 

Draw Branch GameCanvas 

 

Leaf 

Description: This class represents a leaf platform that the player has built and can stand on. It 
stores information about its location. It can be upgraded to a bouncy leaf and it can be eaten by a 
bug. 

Justification: This controller provides an easy way to represent leaves, which are a core part of 
our game. 

Responsibilities Collaborators 

Get level scaling parameters Tilemap 

Upgrade to bouncy - 

Get/set eaten status - 

Draw Leaf GameCanvas 

 



Bug 

Description: This class represents a cyberbug that eats leaves. It stores information about its 
location and its remaining lifespan. 

Justification: There may be multiple bugs on the level at a time, and therefore it is reasonable that 
their location be handled by a model class. In addition, they have a lifespan after which they 
disappear, so their remaining lifespan needs to be stored separately for each bug present on the 
level. 

Responsibilities Collaborators 

Get level scaling parameters Tilemap 

Get/set location  

Get remaining lifespan - 

Update timers - 

Draw Indicator GameCanvas 

 

Fire 

Description: This class represents a fire that threatens to burn the plant if not extinguished. It 
stores information about its burning status, duration, and location. 

Justification: There can be multiple fires with different locations. Additionally, this allows us to 
adjust how fast the fire takes to burn, and track if it has been extinguished. 

Responsibilities Collaborators 

Get level scaling parameters Tilemap 

Get/set location - 

Get/set duration - 



Responsibilities Collaborators 

Get/set burning status - 

Update timers - 

Draw Fire GameCanvas 

 

Water 

Description: This class represents a resource collection point, which may grant water to the player 
when collided with. It stores information about its current supply, maximum supply, location, and 
cooldown. 

Justification: There can be water at multiple different locations, each of which could provide a 
different amount of water. The cooldown for being able to pick up this resource incentivizes the 
player to leave and come back rather than just staying and maxing out their resources. 

Responsibilities Collaborators 

Get level scaling parameters Tilemap 

Get/set location - 

Get current supply - 

Get maximum supply - 

Update timers - 

Draw Water GameCanvas 

 



Sun 

Description: This class represents a resource that adds extra time to the level timer. It stores 
information about its physics properties as well as its transparency in order to perform the fadeout 
as it disappears. 

Justification: This class allows the game to keep track of multiple suns falling from the sky at 
different locations. Additionally, it allows for the fadeout behavior to be self-managed by each sun. 

Responsibilities Collaborators 

Get level scaling parameters Tilemap 

Start fadeout based on plant parameters - 

Update physics properties - 

Update timers - 

Draw Sun GameCanvas 

 

Player 

Description:  This class represents the player in the game. It stores information about the player’s 
position, movement, plant growing and hazard management (whether a fire can be put out)  
abilities.   

Justification: The player is different from other models as it performs physics tasks such as 
jumping and dropping. We also need a way to track whether a player can resolve hazards or grow 
plants as other models should not be able to perform these tasks. 

Responsibilities Collaborators 

Get level scaling parameters Tilemap 

Get position - 



Responsibilities Collaborators 

Get velocity - 

Apply force - 

Apply physics to the player - 

Draw Player GameCanvas 

 



Controllers 

GDXRoot 

Description: This is the root controller. It creates the mode controllers, updates them, and draws 
them to the canvas. It controls mode transitions. 

Justification: This controller is the base for all other controllers, so it is essential to the game. 

Responsibilities Collaborators 

Initialize canvas GameCanvas 

Initialize modes MainMenuMode, LevelSelectMode, 
GameplayMode 

Update modes MainMenuMode, LevelSelectMode, 
GameplayMode 

Draw modes MainMenuMode, LevelSelectMode, 
GameplayMode, GameCanvas 

Transition between modes MainMenuMode, LevelSelectMode, 
GameplayMode, ScreenListener 

 

ScreenListener 

Description: This class is responsible for bringing the modes and GDXRoot together so that 
GDXRoot knows when to switch screens/modes. 

Justification: This class is needed for GDXRoot to know when to switch screens and which 
screen to switch to. It provides a way for the modes to communicate with GDXRoot about when 
the mode should be exited.  

Responsibilities Collaborators 

Set the current mode - 

 



MainMenuMode 

Description: This class is responsible for displaying the screen that users will see when loading 
our game. The player can choose to play the game which takes them to the LevelSelectMode or 
click on the Setting Button to display information about the gameplay. 

Justification: The player needs an introduction to the game, where they can choose to learn how 
to play the game or go straight into selecting a level. 

Responsibilities Collaborators 

Load assets - 

Display title screen GameCanvas 

Play music - 

Open menus based on player input InputController 

Change graphics and input settings GameCanvas, InputController 

Notify listener to change mode when user 
makes selection 

InputController, ScreenListener 

 

LevelSelectMode 

Description: This class is responsible for displaying the screen to select an unlocked level in the 
game. 

Justification: The player needs a way to select a level, since they will not necessarily start at the 
last level played, and may want to revisit an unlocked level. 

Responsibilities Collaborators 

Display level selection GameCanvas 

Play music - 



Responsibilities Collaborators 

Switch between level screens based on player 
input 

InputController 

Notify listener of change in scene when user 
makes selection 

InputController, ScreenListener 

 

GameplayMode 

Description: This class is responsible for handling all the gameplay during the actual game. This 
includes performing all the activities on the activity diagram in order, owning subcontrollers and 
models to perform those activities. 

Justification: This class is the root of the main game. It  initializes the controllers that allow for a 
level to be played.  

Responsibilities Collaborators 

Initialize level PlantController, ResourceController, 
HazardController, Player, Tilemap 

Notify Player of a change in movement Player, InputController 

Update resource amounts ResourceController 

Add/remove hazards HazardController, InputController 

Notify PlantController to grow new branches 
and leaves 

PlantController, InputController 

Display game screen and game objects GameCanvas 

Notify listener of change in scene when exiting 
mode 

InputController, ScreenListener 

 



PlantController 

Description: This class is responsible for handling the state of the plant, including all branches and 
platforms the player has grown.  

Justification: This controller provides a clean and simple way to make changes to and access 
information about the plant. 

Responsibilities Collaborators 

Create/destroy branches and leaves Leaf, Branch 

Initialize plant structure - 

Draw Leaf and Branch objects Leaf, Branch 

 

HazardController 

Description: This class is responsible for hazard generation and updates, which include 
controlling the fire spreading and drone trajectory.  

Justification: This controller is important for handling the state of hazards in the game, including 
spawn rate, spawn time, and whether hazards are to be destroyed. 

Responsibilities Collaborators 

Initialize hazards Bug, Fire 

Update hazard duration/phase/location - 

Spread/stop spreading fire Fire 

Destroy branches and leaves  PlantController 

 



ResourceController 

Description: This class is responsible for hazard generation and updates, which include 
controlling the fire spreading and drone trajectory.  

Justification: This controller is important for Initializing Sun and Water resources and updating 
their counts. It is essential for game balance and difficulty ramping. 

Responsibilities Collaborators 

Initialize resources Water, Sun 

Update resource supply/location Water, Sun 

Increase/decrease counts of resources - 

 

InputController 

Description: This class is responsible for hazard generation and updates, which include 
controlling the fire spreading and drone trajectory.  

Justification: This controller centralizes user input handling and translates input into flags 
understandable by the game modes. Since the controller is a singleton used by other classes, it 
synchronizes the input during a frame for all classes that make changes based on input. 

Responsibilities Collaborators 

Synchronize user input - 

Get/set whether to grow a branch at a certain 
direction 

- 

Get/set whether to display the game settings  

Get/set whether the player can switch to a 
different screen 

- 

Get/set Player movement - 



Responsibilities Collaborators 

Get/set whether the player wants a leaf to be 
added 

- 

Get/set whether the player wants to put out a 
fire 

- 

 

Tilemap 

Description: This class is responsible for populating levels from tilemap files, drawing the tiles 
associated with those levels, and providing getters for tilemap parameters. 

Justification: This controller is essential to load our level files, described in a separate section. 

Responsibilities Collaborators 

Get level parameters - 

Populate level - 

Draw level GameCanvas 

 



View 

GameCanvas 

Description: This class is responsible for drawing to the screen. It handles all the drawing of our 
game, and includes a master draw method that is called by the models. 

Justification: This is one of the core classes of our game and is our only view class. All models 
that have draw methods will use the GameCanvas master draw method. 

Responsibilities Collaborators 

Initialize and close SpriteBatch - 

Draw sprites to the screen - 



Activity diagram 



Data representation model 

Save file 

The save file will be saved in JSON format at the directory specified for the operating system for 
application data storage1, inside a subdirectory named “Phytopolis”. It will contain information 
about the last beaten level, and the best completion times recorded for each level. The JSON file 
contains the following keys: 

●​ “lastBeaten” (integer): the zero-based index of the last beaten level. 
●​ “bestTimeX” (float): the best completion time in seconds for level “X”, -1 if not beaten. 

Example: 

{​
  "lastBeaten": 6,​
  "bestTime1": 8.081565856933594,​
  "bestTime2": 11.679478645324707,​
  "bestTime3": 15.932108879089355,​
  "bestTime4": 16.054201126098633,​
  "bestTime5": 100.47856140136719,​
  "bestTime6": 69.61925506591797,​
  "bestTime7": 77.17472839355469,​
  "bestTime8": -1,​
  "bestTime9": -1,​
  "bestTime10": -1,​
  "bestTime11": -1,​
  "bestTime12": -1​
} 

 

Settings file 

The settings file will be saved in JSON format at the directory specified for the operating system for 
application settings storage2, inside a subdirectory named “Phytopolis”. It will contain information 
about the controls and the graphics settings. The JSON file contains the following keys: 

2 On Windows, the path is exactly the same as the save file. On macOS, it is the path “Library/Preferences/” 
under the local user’s home directory. On Linux, it is represented by the environment variable 
“XDG_CONFIG_HOME”, and defaults to the path “.config/” under the local user’s home directory if the 
variable is undefined. 

1 On Windows, the path is represented by the environment variable “APPDATA”. On macOS, it is the path 
“Library/Application Support/” under the local user’s home directory. On Linux, it is represented by the 
environment variable “XDG_DATA_HOME”, and defaults to the path “.local/share/” under the local user’s 
home directory if the variable is undefined. 



●​ “xKey”/”xButton” (integer): the LibGDX key code mapped to action “x”, -1 if not set. 
●​ “resolutionIndex” (integer): the index of the graphics display mode within the array of 

graphics display modes provided by the main display. 
●​ “fpsIndex” (integer): the index of the frame rate within the array of valid frame rates (VSync, 

15fps, 30fps, 45fps, 60fps, 90fps, 120fps). 
●​ “windowed” (boolean): whether the game is in windowed mode. 
●​ “windowWidth” and “windowHeight” (integers): the dimensions of the window. 
●​ “musicVolume” and “fxVolume” (floats): the volumes between 0 and 1 of the music and the 

sound effects, respectively. 

Example: 

{​
  "jumpKey": 62,​
  "leftKey": 29,​
  "rightKey": 32,​
  "dropKey": 47,​
  "growBranchButton": 0,​
  "growBranchModKey": -1,​
  "growLeafButton": 0,​
  "growLeafModKey": 59,​
  "resolutionIndex": 9,​
  "fpsIndex": 4,​
  "windowed": false,​
  "windowWidth": 1280,​
  "windowHeight": 720,​
  "musicVolume": 1,​
  "fxVolume": 1​
} 

 

Level file 

The level file will be saved in JSON format. It will contain information about the geometry of this 
level, including placement of resources and obstacles. The JSON file is an export from Tiled, and 
thus follows the Tiled specification. This section specifically describes the layers used on the 
tilemaps as well as custom properties for the tilemap. The layers are the following: 

●​ “physics”: contains all the collidable tiles in the level, as well as other elements of the game 
geography including non-collidable balconies, clotheslines, and neon tutorial tiles. 

●​ “resources”: contains all the water collection tiles. 
●​ “hazards”: contains all the hazard-related tiles in the level, including bug hazard warnings 

and power lines. 



The tilemap custom properties are: 

●​ “background” (string): the asset code for the background file. 
●​ “levelnumber” (integer): the level number. 
●​ “time” (integer): the time on the timer at the start of the level, in seconds. 
●​ “victory” (integer): the height of the finish line, in number of tiles. 

Example:3 

{​
  "compressionlevel": -1,​
  "height": 14,​
  "infinite": false,​
  "layers": [​
    {​
      "data": [...],​
      "height": 14,​
      "id": 1,​
      "name": "physics",​
      "opacity": 1,​
      "type": "tilelayer",​
      "visible": true,​
      "width": 6,​
      "x": 0,​
      "y": 0​
    },​
    {​
      "data": [...],​
      "height": 14,​
      "id": 2,​
      "name": "resources",​
      "opacity": 1,​
      "type": "tilelayer",​
      "visible": true,​
      "width": 6,​
      "x": 0,​
      "y": 0​
    },​
    {​
      "data": [...],​
      "height": 14,​
      "id": 3,​
      "name": "hazards",​
      "opacity": 1,​

3 The integer arrays corresponding to tiles in the “data” field of each layer have been omitted for brevity. 



      "type": "tilelayer",​
      "visible": true,​
      "width": 6,​
      "x": 0,​
      "y": 0​
    }​
  ],​
  "nextlayerid": 4,​
  "nextobjectid": 1,​
  "orientation": "orthogonal",​
  "properties": [​
    {​
      "name": "background",​
      "type": "string",​
      "value": "gameplay:background1"​
    },​
    {​
      "name": "levelnumber",​
      "type": "int",​
      "value": 4​
    },​
    {​
      "name": "time",​
      "type": "int",​
      "value": 90​
    },​
    {​
      "name": "victory",​
      "type": "float",​
      "value": 12​
    }​
  ],​
  "renderorder": "right-down",​
  "tiledversion": "1.10.2",​
  "tileheight": 400,​
  "tilesets": [​
    {​
      "firstgid": 1,​
      "source": "tileset.tsx"​
    },​
    {​
      "firstgid": 76,​
      "source": "hazards.tsx"​
    },​
    {​
      "firstgid": 82,​



      "source": "rsrc.tsx"​
    }​
  ],​
  "tilewidth": 600,​
  "type": "map",​
  "version": "1.10",​
  "width": 6​
} 

 

Tileset file 

The tileset file will be saved in JSON format. It will contain information about the tileset for the 
tilemaps. The JSON file is an export from Tiled, and thus follows the Tiled specification. The game 
uses three tilesets corresponding to the three layers on the tilemap files. The physics tileset 
includes hitbox information for the tiles, as specified by the Tiled format. In addition, tiles in the 
hazards tileset include the custom property “type” (string, one of “powerline”, “bug”), representing 
the hazard type. 

Example: 

{​
  "columns": 0,​
  "grid": {​
    "height": 1,​
    "orientation": "orthogonal",​
    "width": 1​
  },​
  "margin": 0,​
  "name": "hazards",​
  "spacing": 0,​
  "tilecount": 6,​
  "tiledversion": "1.10.2",​
  "tileheight": 400,​
  "tiles": [​
    {​
      "id": 0,​
      "image": "powerline1.png",​
      "imageheight": 400,​
      "imagewidth": 600,​
      "properties": [​
        {​
          "name": "type",​
          "type": "string",​
          "value": "powerline"​



        }​
      ]​
    },​
    {​
      "id": 1,​
      "image": "powerline2.png",​
      "imageheight": 400,​
      "imagewidth": 600,​
      "properties": [​
        {​
          "name": "type",​
          "type": "string",​
          "value": "powerline"​
        }​
      ]​
    },​
    {​
      "id": 2,​
      "image": "powerline3.png",​
      "imageheight": 400,​
      "imagewidth": 600,​
      "properties": [​
        {​
          "name": "type",​
          "type": "string",​
          "value": "powerline"​
        }​
      ]​
    },​
    {​
      "id": 3,​
      "image": "powerline4.png",​
      "imageheight": 400,​
      "imagewidth": 600,​
      "properties": [​
        {​
          "name": "type",​
          "type": "string",​
          "value": "powerline"​
        }​
      ]​
    },​
    {​
      "id": 4,​
      "image": "bugzone-set1.png",​
      "imageheight": 400,​



      "imagewidth": 600,​
      "properties": [​
        {​
          "name": "type",​
          "type": "string",​
          "value": "bug"​
        }​
      ]​
    },​
    {​
      "id": 5,​
      "image": "bugzone-set2.png",​
      "imageheight": 400,​
      "imagewidth": 600,​
      "properties": [​
        {​
          "name": "type",​
          "type": "string",​
          "value": "bug"​
        }​
      ]​
    }​
  ],​
  "tilewidth": 600,​
  "type": "tileset",​
  "version": "1.10"​
} 

 


	PHYTOPOLIS 𖧧 Architecture Specification 
	Dependency diagram 
	Models 
	Branch 
	Leaf 
	Bug 
	Fire 
	Water 
	Sun 
	Player 

	 
	Controllers 
	GDXRoot 
	ScreenListener 
	MainMenuMode 
	LevelSelectMode 
	GameplayMode 
	PlantController 
	HazardController 
	ResourceController 
	InputController 
	Tilemap 


	 
	View 
	GameCanvas 

	Activity diagram 
	Data representation model 
	Save file 
	Settings file 
	Level file 
	Tileset file 


