
Trigger Happy Architecture Specification
innate studios — Team 8

Amber Min, Caroline Hohner, Elaine Ran, Ireanne Cao, Jacob Seto,
Linda Hu, Luke Leh, Pedro Pontes García, Phoebe An, Shirley Li

Dependency diagram

Models

Card

Description: This class represents a card in a player’s hand, deck, or discard pile. A card object
has a card type, which is an enumeration.

Justification: This model is not merely an enumeration. It is responsible for returning a card’s type,
its corresponding asset string, obtaining a string value out of it, and comparing it to other cards
with an overloaded equality operator.

Responsibilities Collaborators

Get card type -

Get asset string -

Get string value -

Responsibilities Collaborators

Compare with another card -

Deck

Description: This class represents all the cards that a player owns in a game. It stores the player’s
current hand pile, discard pile, and draw pile. It is able to shuffle and draw cards.

Justification: This model provides an easy way for the player to interact with their cards and store
information on what the player may play in a round.

Responsibilities Collaborators

Add card to draw pile Card

Draw four cards from draw pile to hand pile Card

Discard card from hand pile to discard pile Card

Discard entire hand pile into discard pile -

Get number of cards of specific or any type in
specific pile or whole deck

Card

Get whether deck is full given initial size -

Empty whole deck -

Player

Description: This class represents a player in the game. It stores the player’s ammo, lives and
their current deck.

Justification: This model provides an easy way for the player to interact with their cards and store
information on player ammo, lives, and cards.

Responsibilities Collaborators

Get/set ammo -

Get/set lives -

Set avatar -

Set name -

Get UUID -

Initialize deck Deck

Get deck information Deck

GameState

Description: This class represents the state of a game, including a map of all the players in the
game, and a specific reference to the client’s player.

Justification: This model class is passed between different scenes within the main gameplay in
order to transmit general state about the game. It is used as a container class.

Responsibilities Collaborators

Get/set client player information Player

Get other player information Player

Event

Description: This class represents a network event (such as “I’m ready”, “I took my turn”) sent
from a client to the ad-hoc server and vice versa. Events are sent over the network as JSONs.

Justification: This model class is needed to store, serialize and deserialize event data to send it
across the network.

Responsibilities Collaborators

Get event data -

Store event data from JSON (deserialize) -

Get serialized JSON from event data -

Controllers

App

Description: This is the root controller. It creates the scenes and manages transitions between
them.

Justification: This controller is the base for all other controllers, so it is essential to the game.

Responsibilities Collaborators

Load assets for game -

Initialize network connection NetworkController

Update loading progress LoadingScene

Update and render active scenes HostScene, ClientScene, MenuScene,
GameScene, DraftScene, WinScene

Transition between scenes HostScene, ClientScene, MenuScene,
GameScene, DraftScene, LoadingScene,
WinScene

NetworkController

Description: This singleton class is responsible for connecting hosts and clients. It receives and
sends messages to hosts and clients. It also handles serialization and deserialization of packages
into Events.

Justification: This class is needed to manage networking using a centralized controller.

Responsibilities Collaborators

Establish connections with server -

Send outgoing events -

Receive incoming events -

Check and update network status -

Serialize and deserialize network events Event

TurnController

Description: This class is responsible for moderating rounds. It acts as the ad-hoc server by
synchronizing round flow and resolving turn outcomes.

Justification: This class is needed to move the game through each turn and ensure each player’s
local state is consistent with the rest of the party.

Responsibilities Collaborators

Collect turn messages from players NetworkController

Resolve and report turn outcomes to players NetworkController

Send information about disconnected players NetworkController

AudioController

Description: This class loads and plays all audio for the game.

Justification: This controller centralizes all the audio and gives extra functionality such as
fade-in/fade-out effects to apply to the audio played.

Responsibilities Collaborators

Play audio -

Apply audio effects -

Load all audio in the game -

Fade in/out music -

InputController

Description: This singleton class detects and registers player inputs, including taps and drags.

Justification: This controller is necessary to abstract complex actions like drag-and-drop for cards
or decks, swipes for character scrolling, or direct access to taps in complex layouts to avoid
overlapping listeners.

Responsibilities Collaborators

Activate and track states for all input devices -

Get player tap events -

Get player drag-and-drop events -

Get player swipe events -

Scenes

MenuScene

Description: This class is responsible for displaying our game’s main menu, which allows players
to host and join games.

Justification: This controller is important for handling the state of hazards in the game, including
spawn rate, spawn time, and whether hazards are to be destroyed.

Responsibilities Collaborators

Initialize scene UI elements -

Set that host button was pressed -

Get if player should switch to HostScene -

Get if player should switch to ClientScene -

Play audio AudioController

HostScene

Description: This class is responsible for initializing network controllers, and provides an interface
for hosting the game. It also provides the UI elements to make game modifications.

Justification:

Responsibilities Collaborators

Initialize and manage the scene's UI elements
(buttons, text fields, labels

-

Get whether player should move to DraftScene -

Get whether player should move to -

Responsibilities Collaborators

MenuScene

Display game ID and players data NetworkController

Play audio AudioController

ClientScene

Description: This class is responsible for initializing network controllers and provides an interface
to join a game. It also provides the UI elements for players to choose characters.

Justification:

Responsibilities Collaborators

Initialize and manage the scene's UI elements
(buttons, text fields, labels)

-

Get whether player should move to DraftScene NetworkController

Get whether player should move to
MenuScene

-

Display game ID and players data NetworkController

Play audio AudioController

DraftScene

Description: This class is responsible for displaying the deck construction scene.

Justification: This class is necessary to represent the deck construction phase before a game.

Responsibilities Collaborators

Initialize and manage the scene's UI elements
(buttons, text fields, labels)

-

Initialize the player’s deck GameState

Get if player should move to GameScene -

Get if player should move to MenuScene -

Play audio AudioController

GameScene

Description: This class is responsible for displaying the main gameplay scene. It sends player
actions to the turn controller, and displays the turn resolutions as well.

Justification: This class is necessary to represent the main gameplay loop. Necessary for sending
player information.

Responsibilities Collaborators

Initialize game, including scene graph and core
controllers

TurnController

Update player data and timer NetworkController

Get if player should move to WinScene -

Get if player should move to MenuScene -

Responsibilities Collaborators

Play audio AudioController

Detect gestures to interact with UI InputController

WinScene

Description: This class is responsible for displaying the win scene.

Justification: This class is necessary to represent the scene associated with the end of a game.

Responsibilities Collaborators

Initialize and manage the scene's UI elements
(buttons, text fields, labels)

-

Display the information related to the end of a
game

-

Play audio AudioController

Game Activity Diagram

Data representation model

Decks

The decks are stored in a JSON file jsons/decks.json in the assets directory. This file has the
following structure:

{

 "pickpocket": [

 "SHOOT",

 "SHOOT",

 "SHOOT",

 "SHOOT",

 "SHOOT",

 "REFLECT",

 "STEAL",

 "STEAL",

 "STEAL",

 "STEAL",

 "STEAL",

 "STEAL",

],

 ...

}

Networking Protocol

For our networking, we have several different messages sent over the network. These messages
are serialized into JSONs for transmission and deserialized into event structs. We will have two
types of messages:

-​ Client to host: this type of message is only sent to the host.
-​ Host to clients: this type of message is sent to all clients (including the host)

We have seven types of events:

1.​ GAME_START - enter game state from lobby
2.​ TURN_READY - player reports ready for turn to host
3.​ TURN_START - host gives player turn timer
4.​ TURN_ACTION - player reports turn to host
5.​ TURN_RESULT - host sends playback to players
6.​ GAME_QUIT - host or player quits, response depends on sender

7.​ GAME_END - natural game end
8.​ PLAYER_DROPPED - remove this player's uid as they have left the game

And also nine types of actions:

1.​ NO_ACTION
2.​ RELOAD
3.​ SHOOT
4.​ REFLECT
5.​ STEAL
6.​ SPLIT_SHOT
7.​ BARREL
8.​ HELPING_HAND
9.​ REDRAW

Each event must be associated with a JSON value data, as well as a string representing the
person who sent the event, and an address type representing the type of the person (Client or

Host). The particular form of data depends on the type of event being sent.

For TURN_START, the host sends:

{

 "timer": 10

}

Where “timer” is set to some predetermined length of the turn. In this example, each turn is ten
seconds. The host sends this to every client, so the clients can initialize their own timers.

For TURN_ACTION, the clients must send what action they chose to the host. The data needs to
include the action taken by the player, the target of this action (if necessary) and the current state of

the player. The data associated with this event will have this general structure. This is sent from
clients to the host.

{

 "action": 0,

 "target": "36ebe11e-0eb7-4ecd-8db6-d87b7580c6e0",

 "state": {

 "ammo": 1,

 "lives": 4,

 "cards": 2

 }

}

For TURN_RESULT, the host sends the correct sequence of actions taken and updated player
states to the clients. Each client will update their game states corresponding to the data in the

event. The data associated with this event will have this general structure.

{

 "actions":

 [

 {

 "to": "",

 "from": "36ebe11e-0eb7-4ecd-8db6-d87b7580c6e0",

 "action": 1

 },

 {

 "to": "36ebe11e-0eb7-4ecd-8db6-d87b7580c6e0",

 "from": "848ef7be-0c4d-40ac-ad67-657b43317b3b",

 "action": 2

 }

],

 "states": {

 "848ef7be-0c4d-40ac-ad67-657b43317b3b": {

 "ammo": 0,

 "lives": 3,

 "cards": 2

 },

 "36ebe11e-0eb7-4ecd-8db6-d87b7580c6e0": {

 "ammo": 1,

 "lives": 2,

 "cards": 2

 }

 }

}

For all other events, we send an event with data that is empty.

Application Restoration Plan
When the app is suspended, Trigger Happy runs in the background with muted audio. The system
saves the game state and network details while pinging the host to maintain connectivity. Other
players see a visual cue on the disconnected player's portrait.​
​

If a player disconnects due to a crash or onShutdown(), a 2-turn countdown begins. Reconnecting
within this period resumes normal gameplay; failure results in removal. Since matches are short,
rejoining mid-game isn’t allowed. During the countdown, the player takes no actions. Afterward,
they can start a new game with the previous party.

When the application triggers onResume(), upon resumption of the application, audio is restored
and connectivity is verified to synchronize the player’s state with the ongoing game session.

	Trigger Happy Architecture Specification
	Dependency diagram
	Models
	Card
	Deck
	Player
	GameState
	Event

	
	Controllers
	App
	NetworkController
	TurnController
	
	AudioController
	InputController

	
	Scenes
	MenuScene
	HostScene
	ClientScene
	
	DraftScene
	GameScene
	WinScene

	
	Game Activity Diagram
	Data representation model
	Decks
	Networking Protocol

	Application Restoration Plan

